Advanced Research Projects Agency was renamed to Defense Advanced Research Projects Agency (DARPA) in 1972. A fundamental pioneer in the call for a global network, J.C.R. Licklider, articulated the idea in his January 1960 paper, Man-Computer Symbiosis.
"A network of such [computers], connected to one another by wide-band communication lines" which provided "the functions of present-day libraries together with anticipated advances in information storage and retrieval and [other] symbiotic functions. "—J.C.R. Licklider
Three terminals and an ARPA
Main article: Packet switching Switched packets
Networks that led to the Internet
Networks that led to the Internet
Main article: ARPANET ARPANET
Main articles: X.25, Bulletin board system, and FidoNet X.25 and public access
Main articles: UUCP and Usenet UUCP
Merging the networks and creating the Internet
Merging the networks and creating the Internet
Main article: Internet protocol suite TCP/IP
Main articles: ARPANET and NSFNet ARPANET to Several Federal Wide Area Networks: MILNET, NSI, and NSFNet
The term "Internet" was adopted in the first RFC published on the TCP protocol (RFC 675: Internet Transmission Control Protocol, December 1974). It was around the time when ARPANET was interlinked with NSFNet, that the term Internet came into more general use,
As interest in wide spread networking grew and new applications for it arrived, the Internet's technologies spread throughout the rest of the world. TCP/IP's network-agnostic approach meant that it was easy to use any existing network infrastructure, such as the IPSS X.25 network, to carry Internet traffic. In 1984, University College London replaced its transatlantic satellite links with TCP/IP over IPSS.
Many sites unable to link directly to the Internet started to create simple gateways to allow transfer of e-mail, at that time the most important application. Sites which only had intermittent connections used UUCP or FidoNet and relied on the gateways between these networks and the Internet. Some gateway services went beyond simple e-mail peering, such as allowing access to FTP sites via UUCP or e-mail.
The transition toward an Internet
The first ARPANET connection outside the US was established to NORSAR in Norway in 1973, just ahead of the connection to Great Britain. These links were all converted to TCP/IP in 1982, at the same time as the rest of the Arpanet.
TCP/IP becomes worldwide
Between 1984 and 1988 CERN began installation and operation of TCP/IP to interconnect its major internal computer systems, workstations, PC's and an accelerator control system. CERN continued to operate a limited self-developed system CERNET internally and several incompatible (typically proprietary) network protocols externally. There was considerable resistance in Europe towards more widespread use of TCP/IP and the CERN TCP/IP intranets remained isolated from the rest of the Internet until 1989.
In 1988 Daniel Karrenberg, from CWI in Amsterdam, visited Ben Segal, CERN's TCP/IP Coordinator, looking for advice about the transition of the European side of the UUCP Usenet network (much of which ran over X.25 links) over to TCP/IP. In 1987, Ben Segal had met with Len Bosack from the then still small company Cisco about purchasing some TCP/IP routers for CERN, and was able to give Karrenberg advice and forward him on to Cisco for the appropriate hardware. This expanded the European portion of the Internet across the existing UUCP networks, and in 1989 CERN opened its first external TCP/IP connections.
CERN, the European internet, the link to the Pacific and beyond
The term "Internet" was adopted in the first RFC published on the TCP protocol (RFC 675: Internet Transmission Control Protocol, December 1974). It was around the time when ARPANET was interlinked with NSFNet, that the term Internet came into more general use,
As interest in wide spread networking grew and new applications for it arrived, the Internet's technologies spread throughout the rest of the world. TCP/IP's network-agnostic approach meant that it was easy to use any existing network infrastructure, such as the IPSS X.25 network, to carry Internet traffic. In 1984, University College London replaced its transatlantic satellite links with TCP/IP over IPSS.
Many sites unable to link directly to the Internet started to create simple gateways to allow transfer of e-mail, at that time the most important application. Sites which only had intermittent connections used UUCP or FidoNet and relied on the gateways between these networks and the Internet. Some gateway services went beyond simple e-mail peering, such as allowing access to FTP sites via UUCP or e-mail.
The transition toward an Internet
The first ARPANET connection outside the US was established to NORSAR in Norway in 1973, just ahead of the connection to Great Britain. These links were all converted to TCP/IP in 1982, at the same time as the rest of the Arpanet.
TCP/IP becomes worldwide
Between 1984 and 1988 CERN began installation and operation of TCP/IP to interconnect its major internal computer systems, workstations, PC's and an accelerator control system. CERN continued to operate a limited self-developed system CERNET internally and several incompatible (typically proprietary) network protocols externally. There was considerable resistance in Europe towards more widespread use of TCP/IP and the CERN TCP/IP intranets remained isolated from the rest of the Internet until 1989.
In 1988 Daniel Karrenberg, from CWI in Amsterdam, visited Ben Segal, CERN's TCP/IP Coordinator, looking for advice about the transition of the European side of the UUCP Usenet network (much of which ran over X.25 links) over to TCP/IP. In 1987, Ben Segal had met with Len Bosack from the then still small company Cisco about purchasing some TCP/IP routers for CERN, and was able to give Karrenberg advice and forward him on to Cisco for the appropriate hardware. This expanded the European portion of the Internet across the existing UUCP networks, and in 1989 CERN opened its first external TCP/IP connections.
CERN, the European internet, the link to the Pacific and beyond
Main articles: Digital divide and Internet in the People's Republic of China A digital divide
The interest in commercial use of the Internet became a hotly debated topic. Although commercial use was forbidden, the exact definition of commercial use could be unclear and subjective. UUCPNet and the X.25 IPSS had no such restrictions, which would eventually see the official barring of UUCPNet use of ARPANET and NSFNet connections. Some UUCP links still remained connecting to these networks however, as administrators cast a blind eye to their operation.
During the late 1980s, the first Internet service provider (ISP) companies were formed. Companies like PSINet, UUNET, Netcom, and Portal Software were formed to provide service to the regional research networks and provide alternate network access, UUCP-based email and Usenet News to the public. The first dial-up in the West Coast, was Best Internet[1] - now Verio Communications, opened in 1986. The first dialup ISP in the East was world.std.com, opened in 1989.
This caused controversy amongst university users, who were outraged at the idea of noneducational use of their networks. Eventually, it was the commercial Internet service providers who brought prices low enough that junior colleges and other schools could afford to participate in the new arenas of education and research.
By 1990, ARPANET had been overtaken and replaced by newer networking technologies and the project came to a close. In 1994, the NSFNet, now renamed ANSNET (Advanced Networks and Services) and allowing non-profit corporations access, lost its standing as the backbone of the Internet. Both government institutions and competing commercial providers created their own backbones and interconnections. Regional network access points (NAPs) became the primary interconnections between the many networks and the final commercial restrictions ended.
Opening the network to commerce
The interest in commercial use of the Internet became a hotly debated topic. Although commercial use was forbidden, the exact definition of commercial use could be unclear and subjective. UUCPNet and the X.25 IPSS had no such restrictions, which would eventually see the official barring of UUCPNet use of ARPANET and NSFNet connections. Some UUCP links still remained connecting to these networks however, as administrators cast a blind eye to their operation.
During the late 1980s, the first Internet service provider (ISP) companies were formed. Companies like PSINet, UUNET, Netcom, and Portal Software were formed to provide service to the regional research networks and provide alternate network access, UUCP-based email and Usenet News to the public. The first dial-up in the West Coast, was Best Internet[1] - now Verio Communications, opened in 1986. The first dialup ISP in the East was world.std.com, opened in 1989.
This caused controversy amongst university users, who were outraged at the idea of noneducational use of their networks. Eventually, it was the commercial Internet service providers who brought prices low enough that junior colleges and other schools could afford to participate in the new arenas of education and research.
By 1990, ARPANET had been overtaken and replaced by newer networking technologies and the project came to a close. In 1994, the NSFNet, now renamed ANSNET (Advanced Networks and Services) and allowing non-profit corporations access, lost its standing as the backbone of the Internet. Both government institutions and competing commercial providers created their own backbones and interconnections. Regional network access points (NAPs) became the primary interconnections between the many networks and the final commercial restrictions ended.
Opening the network to commerce
Main article: IETF The IETF and a standard for standards
Main articles: InterNIC, Internet Assigned Numbers Authority, and ICANN NIC, InterNIC, IANA and ICANN
Use and culture
Use and culture
Main articles: e-mail and Usenet Email and Usenet—The growth of the text forum
Main articles: History of the World Wide Web and World Wide Web A world library—From gopher to the WWW
Main article: Search engine Finding what you need—The search engine
Main article: Dot-com bubble The dot-com bubble
Trends & Statistics
In its "Worldwide Online Population Forecast, 2006 to 2011," JupiterResearch anticipates that a 38 percent increase in the number of people with online access will mean that, by 2011, 22 percent of the Earth's population will surf the Internet regularly.
JupiterResearch says the worldwide online population will increase at a compound annual growth rate of 6.6 percent during the next five years, far outpacing the 1.1 percent compound annual growth rate for the planet's population as a whole. The report says 1.1 billion people currently enjoy regular access to the Web.
North America will remain on top in terms of the number of people with online access. According to JupiterResearch, online penetration rates on the continent will increase from the current 70 percent of the overall North American population to 76 percent by 2011. However, Internet adoption has "matured," and its adoption pace has slowed, in more developed countries including the United States, Canada, Japan and much of Western Europe, notes the report.
As the online population of the United States and Canada grows by about only 3 percent, explosive adoption rates in China and India will take place, says JupiterResearch. The report says China should reach an online penetration rate of 17 percent by 2011 and India should hit 7 percent during the same time frame. This growth is directly related to infrastructure development and increased consumer purchasing power, notes JupiterResearch.
By 2011, Asians will make up about 42 percent of the world's population with regular Internet access, 5 percent more than today, says the study.
Penetration levels similar to North America's are found in Scandinavia and bigger Western European nations such as England and Germany, but JupiterResearch says a number of Central Europe countries "are relative Internet laggards."
Brazil "with its soaring economy," is predicted by JupiterResearch to experience a 9 percent compound annual growth rate, the fastest in Latin America, but China and India are likely to do the most to boost the world's online penetration in the near future.
For the study, JupiterResearch defined "online users" as people who regularly access the Internet by "dedicated Internet access" devices. Those devices do not include cell phones.
Worldwide Online Population Forecast
The World Wide Web has led to a widespread culture of individual self publishing and co-operative publishing. The moment to moment accounts of blogs, photo publishing Flickr and the information store of Wikipedia are a result of the open ease of creating a public website. One of the fastest growing websites, YouTube offers user generated videos so instead of consuming data from the website, users produce. This is a new form of interactivity that has changed the way people use the internet. In addition, the communication capabilities of the internet are being realised with VOIP both in enterprise and at home networks and commercial telephone services such as Skype or Vonage. Increasingly complex on-demand content provision have led to the delivery of all forms of media, including those that had been found in the traditional media forms of newspapers, radio, television and movies, via the Internet. The Internet's peer-to-peer structure has also influenced social and economic theory, most notably with the rise of file sharing.
Notable malfunctions and attacks
Trends & Statistics
In its "Worldwide Online Population Forecast, 2006 to 2011," JupiterResearch anticipates that a 38 percent increase in the number of people with online access will mean that, by 2011, 22 percent of the Earth's population will surf the Internet regularly.
JupiterResearch says the worldwide online population will increase at a compound annual growth rate of 6.6 percent during the next five years, far outpacing the 1.1 percent compound annual growth rate for the planet's population as a whole. The report says 1.1 billion people currently enjoy regular access to the Web.
North America will remain on top in terms of the number of people with online access. According to JupiterResearch, online penetration rates on the continent will increase from the current 70 percent of the overall North American population to 76 percent by 2011. However, Internet adoption has "matured," and its adoption pace has slowed, in more developed countries including the United States, Canada, Japan and much of Western Europe, notes the report.
As the online population of the United States and Canada grows by about only 3 percent, explosive adoption rates in China and India will take place, says JupiterResearch. The report says China should reach an online penetration rate of 17 percent by 2011 and India should hit 7 percent during the same time frame. This growth is directly related to infrastructure development and increased consumer purchasing power, notes JupiterResearch.
By 2011, Asians will make up about 42 percent of the world's population with regular Internet access, 5 percent more than today, says the study.
Penetration levels similar to North America's are found in Scandinavia and bigger Western European nations such as England and Germany, but JupiterResearch says a number of Central Europe countries "are relative Internet laggards."
Brazil "with its soaring economy," is predicted by JupiterResearch to experience a 9 percent compound annual growth rate, the fastest in Latin America, but China and India are likely to do the most to boost the world's online penetration in the near future.
For the study, JupiterResearch defined "online users" as people who regularly access the Internet by "dedicated Internet access" devices. Those devices do not include cell phones.
Worldwide Online Population Forecast
The World Wide Web has led to a widespread culture of individual self publishing and co-operative publishing. The moment to moment accounts of blogs, photo publishing Flickr and the information store of Wikipedia are a result of the open ease of creating a public website. One of the fastest growing websites, YouTube offers user generated videos so instead of consuming data from the website, users produce. This is a new form of interactivity that has changed the way people use the internet. In addition, the communication capabilities of the internet are being realised with VOIP both in enterprise and at home networks and commercial telephone services such as Skype or Vonage. Increasingly complex on-demand content provision have led to the delivery of all forms of media, including those that had been found in the traditional media forms of newspapers, radio, television and movies, via the Internet. The Internet's peer-to-peer structure has also influenced social and economic theory, most notably with the rise of file sharing.
Notable malfunctions and attacks
Subscribe to:
Post Comments (Atom)
SmallfromSmall
Blog Archive
-
▼
2008
(107)
-
▼
January
(28)
- The American White Pelican (Pelecanus erythror...
- Cleveland Fusion is a woman's American footbal...
- Before the Internet Advanced Research Projects A...
- Coordinates: 54°57′59″N 1°47′23″W / 54.9663, -...
- This article is part of the series: Politics and...
- The Pangkor Treaty of 1874 was a treaty signed...
- Ethics & objectivity Sources & attribution News...
- This article is part of the series: Politics and...
- Chert (IPA: /ˈtʃəː(r)t/) is a fine-grained silic...
- Observe the Sons of Ulster Marching Towards th...
- Hebrew Bible is a term that refers to the common...
- Lowell Reed was 7th president of the Johns Hop...
- Political parties Elections The Alliance Party o...
- Circus Geranospiza Polyboroides A Harrier is any...
- Luther Elliss (born March 22, 1973) was an Ame...
- This article is part of the series: Politics and...
- 周杰倫封華版Rain南韓出席首映 1000影迷撐場 ( 7則)
- Sick leave (or sickness pay or sick pay) is an...
- Political parties Elections The People's Party f...
- This article lists Scottish football attendanc...
- eclectic may refer to : Eclecticism, philosoph...
- American Revolutionary War In May of 1778, after...
- Themes See also: Homosexuality and psychology#De...
- John Raymond Garamendi (born January 24, 1945)...
- Michaela Tabb (born 11 December 1967 in Bath, ...
- Frederic W. Barnes, an American journalist, au...
- In mathematics, the concept of a curve tries t...
- In computer science, abstraction is a mechanism ...
-
▼
January
(28)
No comments:
Post a Comment